Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(4): 9416-9427, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36050557

RESUMO

In this study, TiO2/MSGM composite material with adsorption-photocatalytic properties was prepared by extracting mesoporous silica glass microsphere (MSGM) from coal gasification fine slag (CGFS) as a novel TiO2 carrier. The results of characterization and properties of the composite showed that MSGM could improve the adsorption capacity and photocatalytic activity of the composite by improving the pore structure of the composite, hindering the growth of TiO2 particles, increasing the phase transition temperature of TiO2, enhancing the dispersion of TiO2 particles. The sample 1:3-TiO2/MSGM-2-500 prepared under the optimized conditions possesses satisfactory morphology characteristics, high adsorption capacity, and photocatalytic activity to rhodamine B (RhB). The synergistic effects of adsorption and photocatalytic significantly increase the total removal rate of RhB. This study not only provides a new direction for high-value-added resource utilization of CGFS but also gives a new kind of low-cost carrier material with adsorption property for TiO2 loading to remove organic dye pollutants.


Assuntos
Carvão Mineral , Dióxido de Silício , Adsorção , Microesferas
2.
Materials (Basel) ; 15(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234252

RESUMO

In this project, the adhesion property and moisture effect between styrene-butadiene-styrene (SBS) modified asphalt binder and aggregate were studied to reveal their interface adhesion mechanism. The influence of SBS contents on adhesion property and moisture effect between binder and aggregate phases were investigated using molecular dynamics simulation. Moreover, the double-layer adhesion models of asphalt binder-aggregate and triple-layer debonding models of asphalt binder-water-aggregate were constructed and equilibrated, and the adhesion property and the moisture effect were evaluated numerically. The results indicate that the built SBS-modified asphalt binder models show favorable reliability in representing the real one. The variation in the work of adhesion for SBS modified asphalt binder-quartz is not remarkable with the SBS content when its content is relatively low. However, the work of adhesion decreased significantly when the content was higher than 6 wt.%, which is consistent with the experimental results. The adhesion between SBS-modified asphalt binder and quartz is derived from Van der Waals energy. The modified asphalt binder with a high SBS modifier content (8 wt.% and 10 wt.%) shows much better moisture resistance (nearly 30% improved) than the unmodified asphalt binder from the work of debonding results. According to the Energy Ratio (ER) values, asphalt binders with high SBS content (8 wt.% and 10 wt.%) present a good moisture resistance performance. Therefore, the SBS content should be seriously selected by considering the dry and wet conditions that are used to balance the adhesion property and debonding properties. The content of 4 wt.% may be the optimal content under the dry adhesion and moisture resistance.

3.
ACS Omega ; 7(23): 19775-19783, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722006

RESUMO

The Al sheets alloyed by Ga-In-Sn are generally utilized to react with water for H2 production, while the valuable byproducts, i.e., alumina hydrates, have not been fully studied. In this work, through controlling the reaction temperature, three types of alumina hydrates, bayerite (40 °C), pseudo-boehmite (PB) (70-120 °C), and boehmite (130-160 °C), were successfully prepared based on a series of interface reactions and structural transformations. These alumina hydrates and their calcined products (alumina) possess high purity with a total impurity element content of <450 ppm, especially an extremely low sodium content (<21 ppm) and iron content (<52 ppm). Significantly, the obtained pseudo-boehmite displays excellent surface properties (specific surface area: 332.7 m2 g-1, pore volume: 0.3 cm3 g-1, and pore diameter: 3.6 nm), competitive to the current commercial SB powder by Sasol. This work not only deepens the understanding of the byproducts in a Ga-In-Sn-alloyed Al-water reaction but also establishes a facile "green" method oriented to industrial applications, which is promising for the linkage benefits of the hydrogen production industry.

4.
Nanotechnology ; 33(9)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34808606

RESUMO

Mesoporous adsorbents and polymer deodorants are difficult to implement on a large scale because of their complicated preparation methods. Herein, a mesoporous adsorbent (CGSA) with a specific surface area of 564 m2g-1and a pore volume of 0.807 cm3g-1was prepared from solid waste coal gasification slag using a simple acid leaching process. The adsorption thermodynamics and adsorption kinetics results verified that the adsorption mechanism of propane on CGSA was mainly physisorption. Then the universality of CGSA in different polymers was investigated by introducing CGSA and its commercialized counterparts (CaCO3, and zeolite) into four common polymers. When the filler content was 30 wt%, the average reinforcement effect of CGSA on the tensile, flexural, and impact strengths of the four polymers was 46.68%, 83.62%, and 211.90% higher than that of CaCO3, respectively. Gas chromatography results also showed that CGSA significantly decreased total volatile organic compound emissions from the composites, and its optimal deodorization performance reached 69.58%, 81.33%, and 91.09% for different polymers, respectively, far exceeding that of zeolite. Therefore, this study showed that low-cost, high-performance, and multifunctional mesoporous polymer fillers with excellent universality can be manufactured from solid contaminants.

5.
ACS Appl Mater Interfaces ; 13(44): 52598-52609, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34705420

RESUMO

Developing electrocatalysts with low price, high energy efficiency, and universal pH value for hydrogen/oxygen evolution reaction (HER and OER) is very important for the wide application of electrochemical water splitting in hydrogen production. The results of density functional theory show that the interface region of CoP3/Ni2P heterostructures can significantly boost all of the catalytic performances. High-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were used to confirm the abundant structural defects and the corresponding adjustment of the electronic state, thus ameliorating the activation energy, conductivity, and active area of the catalyst. Benefiting from these, CoP3/Ni2P heterostructures exhibit superior performance of both HER and OER in a wide pH range. CoP3/Ni2P can also be used for water splitting (1.557 V at 10 mA cm-2) more than 40 h, superior to benchmark pairs of Pt/C and RuO2 on Ni foam.

6.
Water Sci Technol ; 83(8): 1932-1945, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33905363

RESUMO

Permeable asphalt pavement types are generally selected according to local traffic volume and rainfall intensity. This study focuses on the design of the pavement drainage asphalt pavement combination scheme by analyzing the rainfall characteristics of five representative cities in North China. Furthermore, nine kinds of drainage pavement scheme applicable to Beijing are proposed. To this end, the permeable function design analysis, as well as the bearing capacity design analysis of permeable asphalt pavement, was carried out with the help of storm runoff simulation software SWMM5.1 and pavement structure analysis software BISAR3.0, respectively. The results indicate that the minimum total design thickness of permeable surface layer and permeable basic layer meeting the requirements of road drainage in this region is 170 mm, and the nine drainage pavement schemes meet the specification requirements.


Assuntos
Chuva , Movimentos da Água , Pequim , China , Cidades
7.
Materials (Basel) ; 13(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948066

RESUMO

Asphalt rubbers mixed with untreated and plasticized crumb rubbers and a compounding coupling agent were investigated in this study. The low-temperature rheological properties of asphalt rubbers at different aging levels were tested using a dynamic shear rheometer (DSR). An interconversion between linear viscoelastic material functions was used to obtain converted evaluation indexes for the asphalt rubbers at low temperatures. Lastly, the physicochemical characteristics and the microscopic morphology of the asphalt rubbers were evaluated using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. In conclusion, the storage moduli of the asphalt rubbers containing heterogeneous crumb rubbers increased with the plasticized crumb rubber content and the aging level. The converted relaxation moduli were consistent with the change trend of the storage moduli, and the relaxation rate decreased as the plasticized crumb rubber content and the aging level increased. The process of mixing the base asphalt with crumb and plasticized crumb rubbers was physical blending, and the effect of aging on the absorption peak change of asphalt rubber with plasticized crumb rubbers was less than that of asphalt rubber with ordinary crumb rubbers. Aging deteriorated the blending between the crumb rubber and the base asphalt, and a distinct interface appeared between the crumb rubber and the base asphalt. The particle cores of the plasticized crumb rubber in the asphalt rubber were difficult to maintain. Furthermore, as the plasticized crumb rubber content increased, more fine particles stripped off the plasticized crumb rubber after aging.

8.
Materials (Basel) ; 13(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708632

RESUMO

At present, there are no specific indicators and requirements for the low-temperature crack resistance of emulsified asphalt cold recycled mixture (CRME) in the Chinese road mixture specifications. In order to expand the application of this technology in the asphalt surface layer in cold areas, this paper studied the influence of 10 influencing factors on the low-temperature anti-cracking performance of CRME through the semicircular bending test (SCB) with fracture energy as the evaluation index. The research results show that the fracture energy index of the SCB test can be used to evaluate the low temperature crack resistance of CRME. After 10 kinds of influencing factors were analyzed, it was found that the biggest factor affecting the low-temperature cracking resistance of the mixture was the recycling agent, which had an effect on the fracture energy index of over 60%. Followed by cement, fiber and compaction work, the degree of influence exceeded 30%. Finally, combined with engineering application experience, some specific measures to improve the low-temperature anti-cracking performance of CRME were proposed.

9.
Materials (Basel) ; 13(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168856

RESUMO

Vehicle exhaust seriously pollutes urban air and harms human health. Photocatalytic technology can effectively degrade automobile exhaust. This work prepared g-C3N4/CeO2 photocatalytic material by constructing heterojunctions. Four kinds of g-C3N4/CeO2 composite photocatalytic materials with different mass ratios were prepared. An indoor exhaust gas purification test was carried out under natural light and ultraviolet light irradiations. The optimum mass ratio of g-C3N4 material and CeO2 material was determined by evaluating the exhaust gas degradation effective. Moreover, the structure and morphology of the g-C3N4/CeO2 composite were investigated with microscopic characterization experiments (including XRD, TG-DSC, FT-IR, UV-Vis, SEM and XPS). The results obtained were that the optimum mass ratio of g-C3N4 material to CeO2 material was 0.75. The degradation efficiencies under ultraviolet irradiation in 60 min for HC, CO, CO2, NOX were 7.59%, 12.10%, 8.25% and 36.82%, respectively. Under visible light conditions, the degradation efficiency in 60 min for HC, CO, CO2 and NOX were 15.88%, 16.22%, 10.45% and 40.58%, respectively. This work is useful for purifying automobile exhaust in the future.

10.
Materials (Basel) ; 13(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182787

RESUMO

Patching is one of the most common maintenance methods for potholes in roads. In order to improve the performance of cold-patching asphalt mixtures, an emulsified asphalt modified with waterborne epoxy resin was developed. Two waterborne epoxy resins and two curing agents were selected. The optimal experimental contents of the curing agents were obtained by measuring the compressive strength of the waterborne epoxy mortar (WEM) under different curing agent contents and curing period. The difference between the two waterborne epoxy resins was obtained by the flexural strength and stress-strain curves, which were measured by the modified bending test on the WEM. The evaluation method of the initial strength and forming strength of the waterborne epoxy emulsified asphalt mixture (WEEAM) was proposed by the experimental study of the compaction molding method and curing conditions. The high temperature performance, low temperature performance, and moisture susceptibility of the mixture were verified by comparing various kinds of WEEAM. The results show that using WEEAM as a road repair material has great advantages in improving pavement performance and road service levels.

11.
Materials (Basel) ; 13(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968641

RESUMO

Under the repeated loading, the continuous impact and friction of tires on aggregates resulted in some changes in their morphology, which may cause rutting, decrease in skid resistance, and fatigue damage of the road. In order to explore specific changes in coarse aggregate morphology, the Los Angeles abrasion test was used to simulate the force exerted on coarse aggregates and the morphologies of different aggregates before and after abrasion were compared. Four types of coarse aggregates were selected and their mineral compositions were analyzed by X-Ray Diffraction (XRD). The morphological characteristics were measured using Aggregate Image Measurement System (AIMS-Ⅱ), including angularity, surface texture, sphericity and Flat and Elongation (F and E) ratio. Results showed that the angularity value for each type of aggregates significantly reduced after abrasion and the angularity reductions of various aggregates were consistent with the results of abrasion test, indicting the angularity reduction was the main component of abrasion loss. Whereas, there was no significant different between the surface texture of coarse aggregates before and after abrasion. For shape properties, both sphericity and F and E ratio results showed that aggregates with excessively high F and E ratio were easy to break, which might cause rutting and were harmful to pavement. Therefore, for pavements with high performance requirement, coarse aggregates with large angularity and low abrasion value should be preferred, whereas the quantity of particles with excessively high F and E ratio should be controlled.

12.
J Nanosci Nanotechnol ; 20(3): 1554-1566, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492318

RESUMO

Cracks are the main challenges for asphalt pavement, which should be timely repaired. One of the most commonly used repairing methods is to fill the binding materials into cracks, but the repeated repairing ability is insufficient. The self-healing microcapsule technologies provide the potentials for enhancing the repeated repairing ability of filling materials. Therefore, the microcapsule core material was selected from sunflower oil in this study, and the capsular wall material was selected from melamine-urea-formaldehyde resin, which was used to prepare the microcapsule by using in-situ polymerization method. Three kinds of microcapsules with different particle sizes were prepared by adjusting the emulsifier dosage and core wall ratio. The microstructure, molecular structure, thermal stability, and dispersion features were further studied, and the effects of microcapsules with different particle sizes on the repeated repairability of the filling materials were evaluated via the fatiguerepair-fatigue test. In addition, the traditional regenerative microcapsules were compared to determine the optimal particle size range for sunflower oil microcapsules. According to the experimental research, it was thus concluded that the emulsion droplet size distribution was most concentrated when the emulsifier content was 0.7%; and when the core-wall ratio was 1.3:1, the microcapsules had uniform particle size and good dispersion effect. When the microcapsule emulsification rate was 900 rpm and microcapsule content was 2%, then the repeated repair effect for the microcapsule crack filling materials was optimal. The sunflower oil type microcapsule therefore meets the filling temperature requirement for the filler.

13.
J Hazard Mater ; 384: 121347, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31606254

RESUMO

Deodorizing materials are often restricted from large-scale industrial production due to the high preparation cost. By utilizing the simple acid leaching technology, this study made use of the coal gasification fine slag (FS) as raw material to prepare a cost effective FS-based deodorant (FSD) with a specific surface area of 393 m2 g-1 and a pore volume of 0.405 cm3 g-1. The propane adsorption test on FSD showed the maximum adsorption capacity to be as high as 121.61 mg g-1 at 273 K. The partition coefficient values at 10% and 100% breakthrough (BT) for FSD to adsorb propane were 1.5 × 10-3 and 3.2 × 10-4 mol kg-1 Pa-1, respectively. Furthermore, the FSD was applied in the removal of volatile organic compounds (VOCs) pollutants from polypropylene resin (PP). It showed that the deodorizing effect of the FSD was nearly three times as good as the commonly used zeolite deodorants, which was able to decrease 50 percent of the VOCs volatilization amount in PP resin. Moreover, the FSD can better strengthen the mechanical properties of PP resin. This work provides a new method for the industrial production of deodorants as well as a new direction for the recycle of coal gasification wastes.

14.
Sci Total Environ ; 707: 136102, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31863988

RESUMO

Coal gasification fine slag (CGFS) was produced in the coal gasification process which was classified as an industrial solid waste. It was featured with naturally formed amorphous structures and an abundance of silicon, carbon and metal oxides. In this study, on the basis of the composition and structure characteristics of CGFS, a simple hydrochloric acid (HCl) leaching technology was applied to in situ prepare carbon-silica mesoporous composites (CSMCs) from CGFS by fully considering the value of the residual carbon. Special focus was put on the novel mechanism of pore formation in amorphous silica glass microspheres (SGM) during acid leaching. Experimental evidences showed that the metal oxides were uniformly distributed in SGM thus the dissolution of the metal oxides were starting from the surface of SGM, then gradually extending to the interior, and finally leading to form "tree branch" mesoporous channels. In addition, a response surface method was used to predict the optimal reaction conditions and the optimal sample (named as CGFS-O) was successfully prepared. CGFS-O possessed a prominent specific surface area (SSA) (337.51 m2/g) as well as an excellent pore volume (0.341 cm3/g). CGFS-O also exhibited a desirable capacity for NO3- removing and the adsorption process was studied detailed by changing different adsorption conditions. Adsorption results proved that CSMCs have the potential to purify wastewater in an economically and environmentally way. Therefore, combined with a proof-of-concept adsorption performance experiment, our study has not only provided a cost-effective strategy to industrially prepare CSMCs, reutilizing CGFS in an environmentally friendly way, but also contributed to the future applications of CSMCs with valuable insights into the pore formation mechanism in SGM during acid leaching process.

15.
J Mol Model ; 25(12): 365, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31776794

RESUMO

Introducing the crumb rubber into asphalt binder not only can improve the performances of asphalt binder significantly but also can recycle the waste tire economically. However, rubber asphalt presents different mechanical property for the complex sources of crumb rubber. In this study, rubber was classified according to the application situation and the components of tires and three kinds of rubber were selected as the representative of commonly used rubber. Afterwards, molecular dynamics simulations including molecular modelling, dynamics calculation, and mechanical properties analysis were conducted for rubber asphalt with the obtained rubber based on Materials Studio 8.0 software. The variation of mechanical properties of rubber asphalt with rubber contents and rubber types was investigated. The results show that the optimum rubber contents for the tire tread of passenger car, the tire tread of truck, and the tire sidewall are 15%, 5~10%, and 15% respectively. Moreover, rubber from the tire tread of passenger car and the tire sidewall should be given priority for actual applications in rubber asphalt. Graphical Abstract.

16.
J Nanosci Nanotechnol ; 19(1): 57-65, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327002

RESUMO

Micro-damages always occur and accumulate in asphalt pavement materials under the effects of temperature, vehicle loads and other factors during service. Accordingly, self-healing microcapsules could be added into asphalt binder and repair micro-damages to prevent damage extension in time. In this study, the emulsified rejuvenator and melamine-urea-formaldehyde resin (MUF) were selected as the core and cyst wall materials, respectively, and in-situ polymerization method was applied to synthesize the novel microcapsules. The effects of emulsifier dosage and curing time were revealed on the particle size, dispersion, surface morphology and coating properties, and the optimum process parameters were determined for microcapsules. Then, the micro morphology, molecular structure, and thermal stability were further investigated to determine the optimal preparation of the microcapsules. Finally, the linear amplitude sweep (LAS) test was performed to evaluate the self-healing efficiency of the asphalt binder with different dosages of prepared microcapsule, and the optimal dosage of microcapsules was determined as 0.5%.

17.
Water Sci Technol ; 80(9): 1740-1750, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32039906

RESUMO

Permeable asphalt pavement should be selected according to the rainfall characteristics of the project site, so as to improve the permeable performance and ensure the bearing capacity of the pavement structure. Therefore, taking a city in the central plains urban agglomeration of China as an example, the characteristics of the rainstorm intensity distribution and cumulative rainfall are analyzed, and a combination scheme of drainage surface layer asphalt pavement suitable for rainfall characteristics in this area is proposed. Then, the pavement structure design is systematically carried out based on the permeable capacity and bearing capacity. The results show that under the rainfall conditions in this area, there is no surface runoff on the permeable asphalt pavement with 120 mm drainage surface layer, which is suitable for the medium traffic grade of urban roads with cumulative equivalent axle loads of 10 million to 12 million times.


Assuntos
Chuva , Movimentos da Água , China , Cidades , Hidrocarbonetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...